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Night 6: Frames of Reference and LIDAR
Quantitative Engineering Analysis

Spring 2019

1 Overview

In this overnight activity you are going to think about transform-
ing points between different frames of reference, and how to apply
this data collected by the LIDAR on the NEATO in order to create a
"map" of the room.

In many ways, this material is not new, but it will feel new. This
activity draws heavily on the translation and rotation matrices de-
veloped in Module 2, along with the polar coordinate material from
earlier in Module 3. However, rather than translating and rotating
points, we will be using translation and rotation matrices to express
points in different frames of reference.

Unfortunately, we have not found anything particularly useful
online to help, so we have tried to write a pretty self-contained set of
notes. Here are the key points that we will discuss:

Key Points

• A frame of reference is defined by an origin and a coordi-
nate system.

• A coordinate system is defined by a set of basis vectors.

• The coordinates of a point correspond to the components
along each basis vector of a position vector from the origin
to the point.

• The coordinates of a point are therefore dictated by the
frame of reference.

• The notation rG or (x, y)G refers to the coordinates of a
point in frame G.

• Points can be transformed from one frame to another using
matrix multiplication.

• If frame M has origin located at (a, b)G, and has basis vec-
tors rotated counterclockwise by θ, then the transformation
from frame G to frame M is

rM = RMGTMGrG

where TMG is the matrix that translates the origin of frame
G to frame M, and RMG is the matrix that rotates the basis
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vectors of frame G to frame M:

RMG =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1



TMG =

1 0 −a
0 1 −b
0 0 1


• Transforming back from frame M to frame G involves the

inverse of these matrices

rG = T−1
MGR−1

MGrM

• These concepts and quantities can be used to transform
LIDAR data to the room frame in order to create a map.
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2 Frames of Reference [2 Hrs]

In robotics and indeed many other applications, it is often useful
to express points using different coordinate systems. You have al-
ready done this to a certain extent in Module 2 when you expressed
vectorized images as linear combinations of eigenfaces. In robotics
applications, it is beneficial to express points relative to a fixed origin
(e.g. a point designated as the origin in a room) and orthogonal basis
vectors. In other cases, it is convenient to express points relative to
an origin on the robot itself, with one basis vector in the direction of
motion, and the others in orthogonal directions. Here, we will first
develop some tools to translate points from one coordinate system
to another, and apply these tools in the context of the NEATO. You
will then be able to take points expressed in a coordinate system
centered on the robot (e.g. from sensor data), and represent them in
terms of an fixed coordinate system (e.g. with a corner of a room as
the origin). We will work in 2D, but we can just as easily extend this
discussion to higher dimensions.

2.1 Coordinate Systems with the same Origin

A coordinate system consists of an origin and a set of basis vec-
tors. Recall that a set of vectors form a basis if they are linearly
independent—if they are mutually orthogonal then we have an or-
thogonal coordinate system.

The standard basis vectors for 2D are usually labelled ı̂ and ̂, but
they are sometimes written as e1 and e2, or ex and ey, or x̂ and ŷ.
From now on, we will assume that the global reference frame (frame
G) is defined by the standard basis vectors, but just to be very clear
we will use a subscript and write ı̂G and ̂G as the basis vectors of the
global frame G.

Points in 2D are expressed in terms of the basis vectors, and we
refer to the component of the vector as the coordinates of the point.
For example, the point A in Figure 1 has coordinates (4, 3) when
expressed in terms of the standard basis vectors. We might also write
the position vector of A as

Figure 1: The coordinates of the point
(4, 3) are the projections of the position
vector onto the relevant basis vectors.

rG = 4ı̂G + 3̂G

or express it as a row or column vector

rG =

[
4
3

]

All of these refer to the same point, but the first and last representa-
tions imply the basis vectors, while the second representation makes
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it explicit. We use the notation rG to be clear that this is the position
vector of point A when expressed in the frame G. Notice that the
coordinates (xG, yG) of the point A are simply the projection of the
position vector onto the relevant basis vectors,

xG = rG · ı̂G, yG = rG · ̂G

Since these basis vectors are mutually orthogonal the coordinates are
simply (4, 3) as expected, but again for clarity we will write (4, 3)G to
mean that these are the coordinates in the frame G.

How do we express the same point in terms of a new set of basis
vectors, ı̂M and ̂M? Mathematically, we are trying to express the
vector rM as a linear combination of these vectors

rM = xM ı̂M + yM ̂M

where the coordinates of the point are now (xM, yM), i.e. the x and y
coordinates of the point in the frame of reference M. See Figure 2.

Figure 2: The frame M has the same
origin, but the basis vectors are rotated
by an angle of θ. The coordinates of the
point (4, 3)G can be expressed in terms
of the new frame M.

The components of the point A expressed in this coordinate sys-
tem is again the projection of the position vector in the frame G onto
each basic vector of frame M in turn,

xM = rG · ı̂M, yM = rG · ̂M

Since rG = xG ı̂G + yG ̂G we see that

xM = xG ı̂G · ı̂M + yG ̂G · ı̂M, yM = xG ı̂G · ̂M + yG ̂G · ̂M

Whilst this looks cumbersome, it becomes a lot clearer when we use
the following matrix-vector formulation[

xM

yM

]
=

[
ı̂G · ı̂M ̂G · ı̂M

ı̂G · ̂M ̂G · ̂M

] [
xG

yG

]
This matrix is the transformation matrix from the global reference
frame (frame G) to the new reference frame (frame M), and we will
often use the notation RMG when referring to this transformation
matrix

rM = RMGrG

For example, consider the frame M shown in Figure 2, which is
simply the global frame rotated counter-clockwise by an angle θ. The
basis vectors in this frame are

ı̂M =

[
cos θ

sin θ

]
, ̂M =

[
− sin θ

cos θ

]
which means that the transformation matrix from frame G to frame
M is

RMG =

[
cos θ sin θ

− sin θ cos θ

]
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which is almost identical to the rotation matrix we met in Module 2.
Rather than rotating the point through θ degrees, it rotates the coor-
dinate system through θ degrees and expresses the point in terms of
this new coordinate system. If θ = π/4, the point (4, 3)G is expressed
as

rM =

[
1/
√

2 1
√

2
−1/
√

2 1/
√

2

] [
4
3

]

⇒ rM =

[
7/
√

2
−1/
√

2

]

or equivalently (7/
√

2,−1/
√

2)M.
What if we have the coordinates of a point in frame M, and we

wish to express them in frame G? Referring to the transformation
matrix we developed earlier, we can express this using the matrix
inverse

rG = R−1
MGrM

Since this inverse must be the transformation that takes points from
frame M to frame G it must be true that

RGM = R−1
MG

Transforming from frame M to frame G corresponds to a clockwise
rotation of θ so that RGM must be the transpose of RMG,

RGM =

[
cos θ − sin θ

sin θ cos θ

]

For example, consider the point (1, 2)M in frame M. The coordinates
of this point in frame G must be

rG =

[
1/
√

2 −1
√

2
1/
√

2 1/
√

2

] [
1
2

]

⇒ rG =

[
−1/
√

2
3/
√

2

]

or simply (−1/
√

2, 3/
√

2)G.

Exercise (1) The frame M is a counterclockwise rotation of the global frame G
by π/3 radians.

(a) Draw the basis vectors for frame G and frame M.

(b) Plot the frame G coordinates (2,−1)G. Now express the frame
G coordinates (2,−1)G in the frame M, and confirm that this is
the same point by plotting it using the frame M.
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(c) Plot the frame M coordinates (3,−2)M. Now express the frame
M coordinates (3,−2)M in the frame G, and confirm that this is
the same point by plotting it using the frame G.

Solution:

2.2 Coordinate Systems with a different Origin

In addition to defining new basis vectors, we often encounter situ-
ations in which we use a new origin. In Figure 3 we define a global
frame with basis vectors ı̂G and ̂G, and origin OG. We also define a
frame M with basis vectors ı̂M and ̂M, and origin OM. How do we
transform points from frame G to frame M, and vice versa?

Fortunately, we already met the concept of translating points in
Module 2, and here we will utilize these ideas to translate the origin
before rotating the basis vectors. Recall from Module 2 that in order
to translate a point we can use the translation matrix

T =

1 0 tx

0 1 ty

0 0 1


where tx and ty are the components of the translation, and the trans-
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lation matrix acts on the vector x
y
1


For example, let’s consider the case when the origin of frame M

is located at (a, b)G. The coordinates of this point in frame M must
be, by definition, (0, 0)M. The components of the translation must
therefore be −a and −b and the translation matrix that moves the
origin of frame G to frame M is then

TMG =

1 0 −a
0 1 −b
0 0 1


and the translation matrix that moves the origin of frame M to frame
G

TGM =

1 0 a
0 1 b
0 0 1


In order to be consistent, we should adapt our rotation matrix so that
it acts on a vector with 1 in the third slot

RMG =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


and

RGM =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1



Figure 3: The frame M has an origin at
(2, 3)G , and the basis vectors are rotated
by an angle of θ. The coordinates of
the point (3,−1)G can be expressed in
terms of the new frame M.

We are now ready to transform a point from frame G to frame M,
by first translating the origin of frame G to the origin of frame M,
and then rotating the basis vectors from frame G to frame M. The
position vector of an arbitrary point is then

rM = RMGTMGrG

We can, if we choose, combine the translation with the rotation into
a general transformation, but we don’t have to, and there are some
advantages to keeping the distinction clear.

Transforming back from frame M to frame G would be accom-
plished with

rG = (RMGTMG)
−1rM

⇒ rG = T−1
MGR−1

MGrM
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We’ve already seen that the inverse of the rotation matrix is just the
transpose of the original and thus (RMG)−1 = RGM. This makes
sense. To rotate back from frame M to frame G we use the RGM.
Furthermore, the inverse of the translation matrix TMG is just the
translation matrix TGM. Notice, however, that we first apply the
inverse rotation and then the inverse translation,

rG = TGMRGMrM

For example, let’s express the point (3,−1)G in frame M, which
has its origin at (2, 3)G, with basis vectors rotated counterclockwise
by π/4. The coordinates in frame M are therefore

rM =

 1/
√

2 1/
√

2 0
−1/
√

2 1/
√

2 0
0 0 1


1 0 −2

0 1 −3
0 0 1


 3
−1
1


⇒ rM =

 1/
√

2 1/
√

2 0
−1/
√

2 1/
√

2 0
0 0 1


 1
−4
1


⇒ rM =

−3/
√

2
−5/
√

2
1


which means the coordinates are (−3/

√
2,−5/

√
2)M. Let’s check to

see if we can transform this point back from frame M to frame G. The
coordinates in frame G are therefore

rG =

1 0 2
0 1 3
0 0 1


1/
√

2 −1/
√

2 0
1/
√

2 1/
√

2 0
0 0 1


−3/

√
2

−5/
√

2
1


⇒ rG =

1 0 2
0 1 3
0 0 1


 1
−4
1


⇒ rG =

 3
−1
1


which is just where we started!

Exercise (2) The frame M is a counterclockwise rotation of the global frame G
by π/3 radians, and has its origin at (−3, 1)G.

(a) Draw the origin and basis vectors for frame G and frame M.

(b) Plot the frame G coordinates (2,−1)G. Now express the frame
G coordinates (2,−1)G in the frame M, and confirm that this is
the same point by plotting it using the frame M.

Solution:
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(c) Plot the frame M coordinates (3,−2)M. Now express the frame
M coordinates (3,−2)M in the frame G, and confirm that this is
the same point by plotting it using the frame G.

Solution:
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3 Application to the NEATO [2 Hrs]

̂̂

̂̂
Parallel to 
axis of room 

Figure 4: Illustration of NEATO with
different coordinate systems with origin
at the center of rotation of the LIDAR,
and in the origin of a fixed frame of
reference (e.g. origin of the room).

The LIDAR reading provides a range and angle with respect to the
center of rotation of the LIDAR sensor on the NEATO, with the angle
measured relative to the front of the NEATO as illustrated by θ in
Figure ??. The square object is located at a distance r and angle θ as
measured by the LIDAR on the Neato.

̂̂

̂̂
Parallel to 
axis of room 

Figure 5: Illustration of NEATO with
origin at center of rotation.

For further reference, consider Figure ?? which indicates the loca-
tion of the LIDAR relative to the center of rotation of the Neato. The
center of rotation of the Neato is indicated by the magenta circle and
is the origin of two orthogonal unit vectors ı̂N and ̂N (thicker, light
blue arrows). You can physically measure the distance d between the
origin of the reference frame based on the LIDAR and the origin of
the reference frame based on the Neato’s center of rotation.

The orientation of the Neato relative to the absolute horizontal
axis of the room is indicated by the angle φ. Depending on your
application, you may wish to express the position of the object (the
box, in this case) in terms of a coordinate system relative to the center
of rotation of the LIDAR sensor with unit vectors ı̂L and ̂L, center of
rotation of the Neato with the unit vectors ı̂N and ̂N , or the global
frame of reference indicated by the origin marked "O" and the blue
arrows for which the unit vectors are ı̂G and ̂G.

Exercise (3) Suppose that the LIDAR returns a value of (r, θ) when scanning an
object. With reference to Figure ??, please express the location of
the object with respect to the LIDAR frame L.

Solution:

We will denote the location of the object in the LIDAR frame L
as rL. If we measure the polar coordinates of the object then its

location is rL =

[
r cos θ

r sin θ

]
.

Exercise (4) With reference to Figures ?? and ??, please express the location of
the object with respect to the NEATO frame N.

Solution:

We will denote the location of the object in the NEATO frame
as rN . It is a translation with respect to the LIDAR origin. The

location of the object is now rN =

[
r cos θ − d

r sin θ

]
.

Exercise (5) Please express the location of the square object in the global frame
G. Assume that the center of rotation of the NEATO is located at
(xN , yN)G.

Solution:
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The NEATO is translated and rotated with respect to the room.
The transformation matrices are

TGN =

1 0 xN

0 1 yN

0 0 1



RGN =

cos φ − sin φ 0
sin φ cos φ 0

0 0 1


Multiplying these out and transforming the coordinates of the
object in the NEATO frame leads to

rG =

[
r cos(θ + φ)− d cos φ + xN

r sin(θ + φ)− d sin φ + yN

]

where we have used a trig formula.

Exercise (6) Now, we will use these techniques to take LIDAR data and build
a map with respect to a fixed co-ordinate frame. In the classroom,
we have defined an origin, x, and y axes, as well as placed objects
on the floor at fixed locations in the Gauntlet. Your job is to build
a map of the Gauntlet when the NEATO is placed at different
positions and orientations. The map will be built using the co-
ordinate frame with the origin as marked in the Gauntlet and unit
vectors in the x and y directions. We shall call this the Fixed (or
Global) coordinate frame. Recall that the LIDAR data is provided
to you in polar co-ordinates using the co-ordinate frame with the
origin at the center of the LIDAR sensor and the basis vectors
pointing in the forward direction of the LIDAR, and 900 counter-
clockwise from it.

(a) Read through the parts (b)-(e) below. For the sake of logistics,
you can collect all of your data (four different placements of
the Neato) and then construct the plots. You can use the code
in collectAScan.m or write your own code to collect these data.
Remember to record your measurement of the position and
orientation of the Neato after each time you move it.

(b) Place the NEATO at the origin facing in the direction of the x
axis and collect data from the LIDAR. Express the LIDAR data
in the fixed co-ordinate frame. Plot the data in MATLAB using
the fixed reference frame and compare it to the locations of the
objects in the Gauntlet.

(c) With the NEATO at the origin, rotate it through some angle φ

(you can just pick your favourite angle here) and repeat what

https://drive.google.com/file/d/1ZnDro0H-HyNaas_lySvk0eZ_NxsUCME9/view?usp=sharing
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you did for the previous part (i.e., collect LIDAR data, translate
to the fixed co-ordinate frame, plot in MATLAB, compare to
the locations of the physical objects in the Gauntlet). Just to
make sure we are crystal clear, when we say to rotate the Neato
you can either do this by literally picking the Neato up and
rotating it, or you can do it by sending the Neato relevant motor
command (e.g., using teleopAndVisualizer.m).

(d) Now, move the NEATO to a different location (pick your favourite
location in the Gauntlet), but keep it pointing in the same direc-
tion as the x axis, and repeat what you did for the previous
part. You could either use wheel encoder data or take physical
measurements here to determine the position and orientation of
the NEATO.

(e) Now, move the NEATO to a different location and pointing
in some arbitrary direction, and repeat what you did for the
previous part.


